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The problem explored in this thesis is the 

response of an idealized GCM to El Niño-like and how 

to causally link the model’s response to its forcing. 

Once the forcing is determined, the model can then be 

corrected toward some designed goal, e.g. an improved 

simulation of El Niño.  Since this approach implicitly 

includes the effects of transients, it provides a 

better understanding of how transients affect the 

overall climate response to SST anomalies and their 

importance in better overall climate simulations. 
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The first experiment places a Gaussian cooling 

anomaly in the central Pacific centered at 180
0
W and 

the Equator.  The anomaly itself extends from 140
0
E to 

140
0
W and 20

0
S to 20

0
N.  The GCM is integrated forward 

 
in time for 1000 days with this cooling anomaly to 

generate a climate anomaly.  Then, the adjoint is 

integrated with this anomaly introduced at each time 

step and run backward in time to determine the 

sensitivity to that particular climate pattern.  The 

sensitivity generated by the adjoint is centered 

roughly on the date line and has an overall character 

quite similar to the imposed Gaussian cooling anomaly. 

In the second experiment, the GCM was integrated 

forward in time for 1000 days to determine the errors 

associated with the model as measured by departures 

from the DJF climate from the NCEP reanalysis.  The 

model was then run backwards using the adjoint to 

determine the forcing that would cancel this climate 

anomaly.  The model can then be adjusted to account 

for the error and run once again to examine if an 

improvement in the model climate is obtained.  The 

thermal forcing increments associated with this 

iteration process seek to improve the climate by 
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adjusting the tropical/extratropical heating 

contrasts. 

The results obtained appear to provide a useful 

way to correct climate models, and future research 

will focus on implementing this approach in a full 

physics GCM. 
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1. Introduction 

 During an El Niño event, the normally warm western 

Pacific turns cooler as the subtropical easterlies relax 

and the buildup of warm water ceases.  The normally cool 

eastern Pacific warms up as the weaker easterlies reduce 

upwelling and the warmer water from the western Pacific 

migrates eastward in the form of a Kelvin wave pulse.  

Coincident with this change in Sea Surface Temperature 

(SST), the precipitation pattern also changes.  Due to the 

cooler SST, the western Pacific does not experience as much 

convection as it normally does during a non-El Niño year.  

Conversely, the eastern Pacific has much more convection 

than normal due to the warmer SST. 

 These changes in the SST and accompanying changes in 

atmospheric heating associated with convection in the 

tropical Pacific Ocean also change weather patterns across 

the globe.  Changes in the SST force what appear to be 

large-scale atmospheric Rossby waves, propagating from the 

subtropics into higher latitudes.  The increased convection 

in the eastern Pacific causes a divergence pattern aloft 

that is not normally present.  The decrease in convection 

in the western Pacific creates a surface high pressure in 

the central Pacific that is stronger than normal.  

Coincident with these changes in the tropical Pacific, the 



 2 

Aleutian low deepens and high pressure over North America 

strengthens.  This series of alternating high and low 

pressure systems has the structure of a wave train arcing 

over the Pacific and North America, and is called the 

Pacific-North American (PNA) teleconnection pattern.  

 The seasonal to interannual time scales associated 

with El Niño appear to be predictable (Trenberth et al. 

1998); the natural question to ask is can we predict the 

accompanying climate changes in the extratropics? Global 

Circulation Models (GCMs) are generally used to model the 

response of the extratropical atmosphere to El Niño. 

However, GCMs each have their own bias and as such predict 

different responses to El Niño forcing.  Gates et al. 

(1999) examined a number of these models within the context 

of the Atmospheric Model Intercomparison Project (AMIP) 

project and compared them to what actually occurs in the 

atmosphere to better understand model systematic errors.  

AMIP took monthly averaged sea-ice distributions and global 

SST from 1979-88 with a standardized carbon dioxide 

concentrations and solar constant values as boundary 

conditions for the climate model runs.  Several 

generalizations are possible from this study.  While GCMs 

model primary climate variables fairly well when given 

these reasonable boundary conditions, they do have some 
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common systematic errors that are relevant to understanding 

and predicting the El Niño response. In general, each 

model's output ended up looking more like the other model's 

output instead of what is actually observed.  While GCMs 

handle the seasonal migration of precipitation fairly well, 

they do not handle the amount of precipitation that 

actually falls. GCMs are typically too dry in the large 

precipitation areas and too wet in the major desert regions 

for both DJF and JJA, with precipitation errors in the 

tropics on the order of 20 to 40% of the observed value.  

There is a dipole of error estimate in the Pacific Ocean 

with the model underestimating the amount of precipitation 

in the western Pacific by more than 20% and overestimating 

the amount of precipitation in the eastern Pacific from 200 

to more than 300%.  These findings are significant in that 

the errors in precipitation show up as errors in the 

divergence field in the upper atmosphere, which is the 

source for the extratropical climate anomalies. 

 The interannual variability in the Sea-Level Pressure 

(SLP) is modeled well in the tropics, with a fairly small 

standard deviation and the AMIP ensemble and NCEP-NCAR 

Reanalysis being relatively close together.  However, the 

models do not do well in the middle latitudes.  The AMIP 

ensemble and the NCEP-NCAR reanalysis are not close 
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together and the standard deviation is large.  A model 

performance diagram shows that the models act more like 

each other then what is actually observed when modeling SLP 

anomalies in the mid-latitudes.  If the middle latitude 

response to El Niño cannot be modeled correctly on a 

diagnostic basis, it is questionable whether they can 

accurately predict the response to an El Niño SST anomaly 

in forecast mode. 

 To understand the errors associated with the models in 

simulating the extratropical response to El Niño, it is 

necessary to first understand the dynamics associated with 

these responses.  Warm SST anomalies in the Central Pacific 

associated with El Niño are found to enhance convection in 

the Pacific.  Associated with the increased convection, a 

couplet of high pressure areas is found to the north and 

south of the anomaly in the models, with the anomaly 

usually centered near the equator (Sardesmukh and Hoskins 

1988).  Emanating away from the high pressure regions, a 

wave train of alternating geopotential lows and highs and 

stream function anomalies extends into the extra-tropics. 

In modeling the atmosphere it has been found that a 

positive temperature anomaly in the tropics, coupled with a 

divergence field aloft will create a symmetric Rossby wave 

source (Sardeshmukh and Hoskins 1988).  The origin of the 
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Rossby wave source is found in the divergent terms of the 

shallow water vorticity equation: 

   S = - v - D     (1.1) 

      (A)  (B) 

The Rossby wave source S is caused by the divergent wind v  

blowing over a time mean vorticity gradient , along with 

the product of divergence D and absolute vorticity .  Even 

assuming a fixed divergent flow v , the Rossby wave source 

can change with time if  changes (Sardeshmukh and Hoskins 

1988).  In general, the term A dominates the Rossby wave 

source, particularly away from the deep tropics. 

The extratropical response is not directly caused by 

the upper level tropical divergence, which acting alone is 

relatively ineffective.  According to equation 1.1 there 

can be an ample amount of divergence and divergent wind, 

but without vorticity or a vorticity gradient there will be 

no Rossby wave source.  A divergent outflow coupled with 

subtropical convergence and the local Hadley circulation, 

which cause meridional overturning away from the Sea 

Surface Temperature (SST) anomaly, along with the presence 

of vorticity gradients are both essential in initiating 

Rossby wave forcing. For interaction with strong vorticity 

gradients, the divergence needs to interact with the mid-
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latitude westerlies or within a westerly jet stream in the 

equatorial region.  These westerly jet streams are regions 

of strong mean vorticity gradients. Once within these jet 

streams, the Rossby wave forcing can generate a disturbance 

that can propagate into higher latitudes (Trenberth et al., 

1998).   

The effect of such a Rossby wave source can be most 

easily seen by considering the barotropic vorticity 

equation using a Mercator projection of the sphere (e.g., 

Hoskins and Karoly 1981): 

  x = a ,       (1.2) 

y = a ln[(1 + sin )/cos ].   (1.3) 

Then 

    

               

 

          (1.4) 

  

   

  

          (1.5) 

 

 

cos  = sech y/a,     (1.6) 

 

sin  = tanh y/a.     (1.7) 

 

The Mercator basic zonal velocity   

 

         (1.8) 
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is proportional to the angular velocity.  The equation for 

the horizontal stream function perturbation , on 

multiplying by cos² , takes the form 

   

 (1.9) 

where 

 

   

      (1.10) 

      

 

is cos  times the meridional gradient of the absolute 

vorticity on the sphere (Hoskins and Karoly 1981). 

A barotropic model such as this seeks to mimic the 

contribution of the external mode in a continuously 

stratified model to the stationary wave field.  To properly 

do this in this model, the wind blowing over topography 

must be larger than the actual surface wind, but smaller 

than the wind at the equivalent barotropic level (about 300 

– 500mb).  It should be noted that the group velocity of 

the stationary external mode in realistic vertical shear is 

found to be a great deal larger than that of the stationary 

Rossby wave in this barotropic model (Held et al. 1985). 

The wave trains generated by a Rossby wave source in 

this barotropic model can be described by using ray 

tracing.   An  example  is  shown  in  Figure 1, taken from  
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Figure 1.  Linearized, steady state primitive equation 

model solution to thermal forcing in the tropics in 

northern hemisphere (NH) winter, showing (a) the height 

field anomalies at 200 hPa, contour interval 20m, (b) the 

associated horizontal flux of stationary wave activity, and 

(c) the barotropic Rossby wave rays for tropical forcing at 

15
0
N in a 300 hPa NH winter basic state; crosses indicate 

phases every 180
0 
[from Trenberth et al., 1998]. 
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Trenberth et al. (1998).  Ray tracing follows the wave 

packet of energy as it is forced out of the tropics and 

moves into the middle and higher latitudes.  Figure 1a 

shows the alternating geopotential highs and lows emanating 

from a region of anomalous tropical heating in a linearized 

primitive equation model, denoted by the stippled area at 

200 mbar.  Figure 1b denotes the associated horizontal flux 

of stationary wave activity.  Figure 1c shows the different 

rays, each corresponding to a different wave number K, 

which emanates out of the tropics.  These rays reach their 

turning latitude, and then go back into the tropics, where 

(presumably) they are absorbed.  The behavior of these rays 

can be explained by examining the dispersion relation for 

plane wave solutions expi(kx + ly - t) of 1.9 

      

                              (1.11) 

Here Mu  is the local zonal wind, k is the zonal wave 

number, M is the potential vorticity gradient, l is the 

meridional wave number, and the frequency, , is zero since 

we are considering stationary waves.  The activity of 

almost-plane waves moves with the group velocity in the y 

direction 

      (1.12) 
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where k is constant.  Therefore the variable that is 

changing the group velocity is l, so l must be isolated to 

determine the behavior of the waves.  When l is isolated it 

yields the equation 

        (1.13) 

where the stationary wave number   Rossby 

waves reach their turning latitude when KS = k, as at that 

location their meridional group velocity vanishes (Hoskins 

and Karoly 1981). 

As shown in Figure 1c, short waves (rays 4-7) reach 

their turning latitude very quickly and never make it into 

the extratropics.  Since k is a fairly large for such 

waves, KS = k before the Rossby wave can make it through 

the jet stream to propagate into the higher latitudes.  

Long waves (rays 1 & 2) never reach their turning latitude 

and travel approximately along great circles.  This occurs 

because k is so small that KS never equals k.  However, 

wavelengths that fall in between these two extremes (ray 3) 

correspond with the largest response in the extratropics 

due to El Niño forcing.  These rays arc in an almost Great 

Circle path from the tropics and into the higher latitudes, 

spend a great deal of time in the vicinity of their turning 

latitude at about 60°N, and then return to the tropics.  

This occurs because KS  k in the middle of the jet stream, 
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allowing the Rossby wave to travel within the jet stream 

itself as if the jet were in wave guide.  These wave trains 

seem to move most effectively in the middle latitudes along 

an equivalent barotropic level often found between 500 and 

200 hPa (Hoskins and Karoly 1981).   

 The primary failing of this is that the response in 

GCMs does not translate with heating, as this barotropic 

model would suggest.  Rather, response occurs in preferred 

locations, i.e., the PNA region.  This is because there are 

resonant anomalies present in the zonally varying flow that 

need to be accounted for within the model.  To this end, we 

next consider a barotropic model that contains a basic flow 

that varies with longitude as well as latitude. 

 Simmons et al. (1983) used such a barotropic model to 

determine if there are regions of the tropics that may 

excite a particularly large midlatitude response.  Their 

results showed that Southeast Asia and the tropical 

northwest Pacific were two regions that excited a large 

response over the extratropical northeast Pacific.  

Interestingly, these two regions are areas of significant 

convective activity.  Forcing of an opposite sign over the 

tropical central Pacific can create a weaker, though 

similar, response.  Therefore, a PNA pattern response can 

be triggered by a tropical anomaly comprising an eastward 
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or westward shift of convective heating between the 

dateline regions and regions lying near 120
0
E.  This 

redistribution of convective heating is similar to the 

Southern Oscillation rainfall anomalies (Simmons et al. 

1983).  This significant result allows us to confidently 

focus our attention on tropical forcing in the Pacific. 

The results of Simmons et al. (1983) show that zonal 

inhomogeneities in the time mean flow are important to the 

overall structure of the response.  However, even with the 

zonal inhomogeneities this barotropic model still fails to 

correctly model the response to El Niño, primarily because 

transient eddies play a large role in that response.  Held 

at al. (1989) found that transients are the dominant 

forcing mechanism in a linear diagnostic baroclinic model, 

particularly the anomalous upper tropospheric transient 

vorticity fluxes, and further that the direct response to 

anomalous diabatic heating was rather small in the 

extratropics.  Transients respond in two primary ways to 

tropical heating: the movement of the Pacific storm track 

associated with the anomalous extratropical wave train, and 

changes in the penetration of Rossby waves into the tropics 

resulting from the modified tropical winds (Held et al. 

1989).  These results are illustrated in Figures 2-4 from 

Held et al. (1989). 
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Figure 2a shows the 300 hPa eddy geopotential height 

obtained from the GCM integration in Lau (1985).  Figure 2b 

shows the total linear response of 300 hPa geopotential to 

the difference in heating between the two composites plus 

the anomalous transient eddy forcing in the momentum and 

temperature equations.  Figure 2c is the linear response to 

 

Figure 2.  (a) The 300 hPa eddy geopotential height 

obtained from the GCM integration in Lau (1985) by 

compositing three El Niño winters and subtracting an 

analogous composite for three anti-El Niño winters; (b) the 

linear response of the 300 hPa geopotential to the 

anomalous diabatic heating and forcing by transient eddies; 

(c) the linear response to anomalous diabatic heating; (d) 

the linear response to the anomalous forcing by transients. 

 The contour interval is 10 m.  Negative values are shaded 

[from Held et al., 1989]. 
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anomalous diabatic heating and 2d is the linear response to 

the anomalous forcing by transients.  The heating alone 

forces an extratropical wave train that is much smaller 

than that generated by the GCM while the response to the 

anomalous transients is clearly dominant (Held et al. 

1989). 

Figure 3 is similar to Figure 2 except the eddy zonal 

wind at  300  hPa is  examined.  This  figure  shows  that 

 

Figure 3. As in Figure 2, except for the eddy zonal wind at 

300 hPa.  The contour interval is 2 m s
-1
. negative values 

are shaded [from Held et al., 1989]. 
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heating alone produces easterlies that do not penetrate far 

enough into the northern subtropics, along with a 

subtropical acceleration that is weak and displaced 

equatorward.  The forcing by transients appears to be 

needed to extend the easterly anomaly further northwards as 

well as to generate the bulk of the acceleration of the 

midlatitude winds in the central Pacific (Held et al. 

1989). 

Figure 4 decomposes the transient response further to 

determine which part of the transient forcing predominates. 

Figure 4a shows the 300 hPa eddy geopotential produced by 

the anomalous transients in the vorticity equation.  

Figures 4b and 4c decompose this into the lower troposheric 

transients (p < 600 hPa) and upper tropospheric transients 

of which the upper tropospheric transients were found to 

provide the bulk of the response (Held et al. 1989).   

The linear diagnosis of the GCMs response to El Niño 

clearly demonstrates that the model’s extratropical wave 

train is not simply the direct response to anomalous 

tropical heating; the response to the anomalous transients 

is vitally important, particularly the response to 

anomalies in the upper tropospheric vorticity fluxes (Held 

et al. 1989). 
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Figure 4. The linear response of 300 hPa geopotential 

height to (a) the anomalous vorticity tendency due to 

transients, (b) the anomalous vorticity tendency due to 

transients in the upper troposphere (p < 600 hPa), and (c) 

the anomalous vorticity tendency due to transients in the 

upper troposphere, with high latitude forcing (> 70
0
N) 

excluded. Contour interval is 10 m [from Held et al., 

1989]. 
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Other problems in correctly modeling the extratropical 

response  to  El  Niño  include  the  processes  involved  

in transforming the thermally forced internal mode in the 

tropics into an external, equivalent barotropic mode in the 

extratropics, along with the mechanisms that produce 

extratropical convergence anomalies associated with the 

Rossby wave source. There also needs to be further research 

into nonlinearity along with the role of transients.  In 

the atmosphere, as well as in models, climate anomalies are 

due in large part to motions on a time scale of a month or 

less and how those motions are influenced by errors in 

physical parameterization.  The importance of transient 

eddies to the overall response suggests that if a 

systematic technique is to correctly attribute climate 

model errors to errors in physical parameterizations, 

leading to better El Niño forecasts, it must include the 

effects of such eddies.  Climatological mean planetary 

waves can produce internal sources of energy that can 

compete in magnitude with the original perturbation.  

Planetary waves are also important in that they can produce 

changes in jet streams and storm tracks, which can alter 

and reinforce the initial response.  All of these 

parameters can be modeled; however, the signal needs to be 

sorted out from the naturally occurring high level of 
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variability that creates noise in the models. 

The problem we will explore is the response to El 

Niño-like forcing in an idealized GCM and how to causally 

link the model’s response to its forcing.  This will be 

done within the context of control theory.  Once the 

forcing is determined, in principle the model can then be 

corrected toward some designed goal.  Since this approach 

implicitly includes the effects of transients, it should 

give us a better understanding on how transients affect the 

overall climate response to SST anomalies and how we can 

account for them to yield better overall climate 

simulations. 
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2. Description of the Model 

 An idealized spectral GCM, based on atmospheric 

primitive equations and incorporating simple physical 

parameterizations, will be used to study the atmosphere’s 

response to El Niño forcing.  This model is a standard 

hydrostatic, σ-coordinate, semi-implicit, spectral 

transform model, in the vorticity-divergence form.  The 

equations that will be used in the model are as follows: 

 

 

 

 

 

 

 

where 

  

 

 

 

 

 

 

is the usual force and energy balance terms in the momentum 
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and energy equations, respectively. 

 Newtonian relaxation of the temperature field to a 

zonally symmetric state and Rayleigh damping of low-level 

winds to represent boundary-layer friction is used for the 

forcing and dissipation.  Forcing GCMs in this way is 

common, especially in two-layer models (Held and Suarez 

1994). 

 To start the model, the following parameters must be 

specified: the gas constant (R), the specific heat of air 

at constant pressure (cp), the acceleration of gravity (g), 

the radius of the sphere (ae), the total mass of the 

atmosphere (p0/g), and the forcing parameters.  A simple 

linear damping of the velocities is the only specified 

dissipation.  The strength of the damping kv is a function 

of p/ps, where p is the pressure and ps is the pressure at 

the surface.  In order for the boundary layer to follow the 

topography,  is used instead of pressure.  Layers near the 

surface (   0.7) are the only place where the damping is 

nonzero (Held and Suarez 1994). 

 Temperatures are relaxed to create a radiative 

equilibrium Teq, a function of latitude and pressure.  This 

radiative equilibrium is given some static stability, which 

is large in the tropics and dissipates to zero at the 

poles.  This tropical static stability is an artifact that  
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Figure 5. The upper panels contain the prescribed radiative 

equilibrium temperature (a) and potential temperature (b) 

distributions.  The lower panels contain 1000-day averages 

of the zonal mean temperature (c) and potential temperature 

(d) distributions produced by the G72 gridpoint model [Held 

and Suarez 1994]. 

 

 

 

 

 

 

 

 

Figure 6. The 1000-day mean zonal-mean zonal wind produced 

by the T63 spectral model.  Since the forcing is symmetric 

about the equator, differences between the hemispheres are 

indicative of sampling errors [Held and Suarez 1994]. 
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helps minimize the occurrence of gravitational instability. 

 The temperatures and the corresponding potential 

temperatures are shown in Figures 5a,b.  The radiative 

relaxation, also a function of latitude and , creates an 

unrealistic thin cold layer near the surface, particularly 

in the tropics, when a long relaxation time is used 

everywhere.  To reduce this effect, a shorter relaxation 

time is used in the tropics.  Figures 5c,d show the effect 

that radiative relaxation have on the time-mean temperature 

and potential temperature distribution.  The potential 

temperatures show that this static stability layer is 

supported by the dynamics in the extratropics well above 

its radiative equilibrium value (Held and Suarez 1994). 

 In the model, horizontal mixing is included on a very 

scale selective basis while vertical mixing, convective or 

diffusion adjustment, has been omitted altogether.  The 

model can be integrated stably without enhanced vertical 

mixing to account for the gravitationally unstable regions 

that occur in the low latitudes.  The zonal mean wind used 

in the model is illustrated in Figure 6. 

The transform grid is chosen to ensure alias-free 

computation of quadratic products, in the usual way.  The 

hydrostatic equation is integrated analytically assuming 

that temperature is constant within each layer, and the  
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Figure 7. Model (left) and observed (right) 500 mb height 

time mean, high frequency variability RMS, and low 

frequency variability RMS for January.  The modeled 

variability is calculated using the forcing resulting from 

20 iterations of the forcing optimization technique, while 

the observed variability is calculated from the 1983-1993 

ECMWF analyzed fields. 
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vertical differencing uses central differences.  There are 

5 vertical levels in the model, each equally spaced in 

sigma, with the top of the model at zero pressure.  Time 

stepping is done using a leapfrog scheme, using a time 

filter to control the computational mode.  The horizontal 

mixing of vorticity, divergence, and temperature takes the 

form of the Laplacian raised to the fourth power, with the 

strength set so that the e-folding time for the smallest 

wave in the system is always 0.1 days.  The truncation is 

triangular. 

 The model climate used in the calculations is shown on 

the right hand side of Figure 7 while the observed climate 

is on the left hand side of Figure 7.  The 500 mb height 

time mean in our model is too zonal and does not simulate 

the troughs and ridges that are present in the observed 

climate.  The high frequency variability RMS shows that the 

model climate extends the storm tracks too far downstream 

does not contain enough low frequency variability RMS.  

Even with these deficiencies, this simulation is reasonable 

considering the simplicity of the model. 
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3. Description of Adjoint Methods 

 We are interested in the sensitivities of a large 

number of atmospheric output parameters, such as 

geopotential height at many different locations and times, 

with respect to one input field, namely heating.  Practical 

implementation of the minimization of the scalar function 

will require repeated explicit determination of the 

gradient of the scalar function with respect to all the 

input parameters whose values are sought (Talagrand 1991). 

 Let us consider a finite algebraic process which, 

starting from some input vector u belonging to some open 

set U  ℝn (u = (uI, i = 1,…,n)) produces an output vector 

v belonging to ℝm (v = (vj, j = 1,…,m)).  The process can 

be described by the equation 

  v = G(u)       (3.1) 

where G is a differentiable function defined in U with 

values in ℝm.  The perturbation v on the output resulting 

from a perturbation u on the input is given to first order 

by the corresponding tangent linear equation  

  v = G’ u       (3.2) 

where G’ is the local jacobian matrix of G.  Let now v  

J(v)  ℝ be a differentiable scalar function defined on 

the image set G(U).  The gradient of J with respect to u is 
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given by the chain rule 

        

i = 1,…,n   

 

or, in matrix notation 

       (3.3) 

where G’* denotes the transpose of G’ (Talagrand 1991). 

 The adjoint method simply consists in numerically 

computing through the formula (3.3).  The main 

advantage of the adjoint method is that it is numerically 

very economical, at least in comparison with the other 

methods which could be considered for determining   

The numerical cost of one adjoint computation will 

generally be of the same order of magnitude as the cost of 

one direct computation (3.1).  This is much less than the 

other methods (forward automatic differentiation or finite 

differences) which could be considered for numerically 

determining the gradient  Two important remarks are 

in order. 

1. If G is the composition of a number of more elementary 

processes, 

    

 the transpose jacobian G’* will be the product of the 

elementary transposed jacobians, taken in reversed 

order 
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 This suggests a systematic procedure for developing the 

adjoint of a given code: successively develop the 

adjoints of the various components of the basic code 

(these components can for instance be FORTRAN 

subroutines, each of which can itself be decomposed 

into more elementary components, down to the individual 

executable FORTRAN statements), and then connect the 

elementary adjoints in reversed order.  In the adjoint 

code the input and output spaces of each component of 

the basic code will be reversed.  These notions will be 

developed in detail later on (Talagrand 1991). 

2. When the function J is nonlinear, the gradient  

will depend on the point u at which it is evaluated, 

and the adjoint computation (3.3) will require the 

knowledge of all quantities used in nonlinear 

operations in the direct computation of (3.1).  It will 

therefore be necessary to store these results at the 

time of the direct computation.  This is the price to 

be paid for the economy that the adjoint method allows 

in the amount of computation. 

The adjoint method has just been described in the 

finite dimensional algebraic case, appropriate for computer 

codes.  But the principle of the adjoint method is not 
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limited to algebraic cases.  It will be useful for the 

sequel to describe more precisely what the adjoint method 

becomes when the basic computation (3.1) represents the 

integration of a dynamical system 

        (3.4) 

where, to fix ideas, we assume that x belongs to ℝn .  The 

input u is now the initial condition x(t0) from which (3.4) 

is integrated, while the output v is the result x(t1) of 

the integration at a given time t1 t0(m = n in this 

particular case).  For a given solution x(t) of (3.4), the 

analog of computation (3.2) is the integration, from u = 

x(t0), of the corresponding tangent linear equation 

        (3.5) 

where F’(t) denotes, for any t, the jacobian of the 

function F, taken at point x(t).  As for the analog of the 

adjoint computation (3.3), it is the integration, from the 

“final” condition of the adjoint equation 

       (3.6) 

(Talagrand 1991). 

 The principle of the adjoint method can be further 

extended to infinite dimensional cases. In such examples, 
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the analog of equation (3.1) will often be the integration 

of a set of partial differential equations, u denoting 

initial or boundary conditions whose specification uniquely 

defines the solution of the equations, and v denoting that 

solution.  The adjoint computation (3.3) will then 

represent the integration of a set of linear partial 

differential equations, whose output along the 

initial/lateral boundaries will define how one must act on 

these boundaries in order to make the function J(u) vary in 

a prescribed way.  In that context, the adjoint equations 

can be used, either as a theoretical tool for obtaining the 

mathematical solution of a given control problem, or a 

numerical tool for obtaining the (discretized) numerical 

solution of a control problem.  Variational assimilation of 

observations is in fact a discretized version of an 

infinite dimensional control problem with respect to the 

initial conditions of an atmospheric model (Talagrand 

1991). 

We will use the adjoint method to determine heating 

anomalies which, when superimposed on given meteorological 

fields, will project onto patterns of interest, e.g. PNA 

and model climate errors.  This question is of the utmost 

importance for what is now a major problem in climate 

modeling, namely how do we estimate the error associated 
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with the climate models in order to improve upon them.  The 

evolution of the flow being governed by a differential 

equation of the form (3.4), the time evolution of a 

perturbation h0 superimposed on a solution x(t) of (3.4) 

at time t0 will be described, to first order, by the 

corresponding tangent linear equation (3.5).  
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4. Coding the Adjoint 

To code the adjoints the components of the adjoint 

code must be in one-to-one correspondence with the 

components of the direct code: to each subroutine of the 

adjoint code, performing a well defined task, will 

correspond a subroutine of the adjoint code, performing 

the adjoint task (with inversion of the inputs and 

outputs).  Similarly, to each FORTRAN statement in the 

direct code will correspond one (or several) statement 

in the adjoint code. 

 These principles can be illustrated on the FORTRAN 

statement 

        (4.1) 

to be considered here as the analog of equation (3.1).  

The input to this statement is made up of b and c, while 

its output is made up, not only of a, but also of b and 

c, which, in a FORTRAN code, will of course still be 

available, after statement (4.1) has been executed, for 

possible future use.  The corresponding “tangent linear” 

statement, analogous to (3.2), reads 

       (4.2) 

which, for given b and c (i.e. for a given basic 

computation), defines a linear operator, with input 
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( b, c)
T
, and output ( a, b, c)

T
.  The corresponding 

matrix is the 3x2 matrix 

10

01

bc

 

The corresponding adjoint computation, which leads from 

a 3-vector ( ’a, ’b, ’c)
T
 to a 2-vector ( ”b, ”c)

T
, 

therefore reads 

       (4.3) 

We recall the meaning of the different variables: ’a, ’b 

and ’c are the partial derivatives of some output 

function of the basic code with respect to the variables 

contained in the respective addresses a, b and c after 

statement (4.1) has been executed, while ”b and ”c are 

the partial derivatives of the same output function with 

respect to the variables contained in addresses b and c 

before statement (4.1) has been executed (Talagrand 

1991). 

 Equations (4.2) and (4.3), and the meaning 

associated to ’b, ’c, etc, suggest to use the same 

FORTRAN name for ’b and ”b, and for ’c and ”c.  

Indeed, experience shows that it is more convenient to 
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use the same FORTRAN name for a linear code, and for the 

corresponding adjoint variable in the adjoint code.  As 

for the “nonlinear” quantities which have been saved 

form the basic computation, they will be named according 

to a simple transparent rule, for instance be adding a 

prefix b in front of their basic name.  With these 

conventions, eqs (4.2) and (4.3) respectively become 

 

and 

        (4.4) 

The form of statements (4.4) clearly shows that all 

adjoint variables must be set equal to 0 in the adjoint 

code before they are used for the first time.  

Similarly, statement (4.1) defines in the basic code a 

new content for the address a.  In order to avoid any 

possible interference with a possible previous use of 

address a in the basic code, it is necessary, in the 

adjoint code, to set the content of address a to zero 

after statements (4.4) have been executed.  The adjoint 

statements corresponding to statement (4.1) therefore 

finally read 



 34 

 

The general rules which have just been demonstrated can 

be automatically implemented on a FORTRAN code.  It is 

seen that the tangent linear code is a necessary 

intermediary for developing the adjoint code.  The 

tangent linear code is also extremely useful for 

checking the adjoint code.  The only basic choice to 

make, when developing either the tangent linear or the 

adjoint code, is whether the quantities appearing in 

nonlinear computations in the basic code will have to be 

recomputed in the course of the tangent linear or 

adjoint computation (Talagrand 1991). 

There is a very simple method to test whether or 

not the adjoint works and if you chose the right matrix.  

In the tangent linear model  in order to 

insure that the correct matrix M  was chosen.  In order 

to determine if the adjoint worked correctly the 

should be met where M  is condition  

the transpose of M .  This condition was placed at the 

beginning of the program with M  coming from the 

subroutine tanint and M  coming from adjint and then 

multiplied by the corresponding x and y variables.  For 
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the program to continue the condition has to be met 

within double precision accuracy. 
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5. Experiments 

Our project has two objectives.  The first of which 

is to show we can reproduce forced anomalies through 

adjoints.  Specifically, given an El Niño anomaly we 

want to find the forcing responsible for creating this 

anomaly.  The second objective is to determine the error 

associated with the model and reduce it systematically.  

Before either of these can be dealt with the tangent 

linear growth needs to be understood along with the 

model error itself. 

To understand how to account for model error we 

will take a simple matrix propagator corresponding to 

the system tt xMx  1  where 

M  = 

2/100

3/110

3/13/13

 

The way this matrix is set up the middle and lower term 

act are neutral or decaying while the top term is the 

growth term.  In this matrix the middle and lower term 

do not feel any effects from the upper term.  The 

adjoint to this simple system simply involves the 

transpose of the matrix, 
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TM = 

2/13/13/1

013/1

003

, 

with the corresponding sensitivity evolution equation 

*

1

*

 t

T

t xMx  .  Multiplying 
TM  and M  by themselves 10 

times yields: 

M 10
= 

410*77.900

666.10

29.91853.984159049



 (
TM )

10
=

410*77.9666.29.9185

0133.9841

0059049



; 

in the )( TM 10
 matrix, the growth of the middle and lower 

terms fshows that this operator “feels” the growth of 

the upper term, i.e. errors in these decaying terms can 

lead to errors in the growing term in the future for 

this simple matrix operator.  However, in the M 10
 matrix 

the middle and lower terms are unaffected by the growth 

of the upper term.  In order to find the leading vector 

multiply both results by the unit vector A = [1 0 0] 

M 10
 *A = 

0

0

59049

    (
TM )

10
*A = 

29.9185

33.9841

59049

 

Growth in sensitivity occurs in all degrees of freedom; 

in contrast with the tangent linear M 10
 matrix, where 

only the unstable direction amplifies.  In general time 

dependence of M  means non-trivial growth of xM T  will 
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occur in an arbitrary basis.  This growth of the 

sensitivity must be handled for application of inverse 

techniques over climatic time scales. 

 Generalizing the above, we define a non-linear 

model M  that operates on the true state vector xn.  

Then, the actual system evolution at time tn is 

,)(1

q

nnn exMx         (5.1) 

where 
q

ne  is the model error at time tn.  Introducing the 

tangent linear approximation yields 

,)()( nnnn xxMxxM    

where 
nxxn xxMxM


 /)()( is the tangent linear model of M  

evaluated at nx  and nx  is the variation of nx  (Ménard 

and Daley 1996). 

 To handle the growth of the sensitivity within this 

tangent linear system, we begin with an adjoint equation 

of the form 

,11

],[)( *1

1

*



 



Nn

xzRxM nnnnn

T

n 
     (5.2) 

subject to the adjoint final condition, 

],[ *1

nnnN xzR          (5.3) 

where 
1

nQ  is the model uncertainty, 
1

nR  is the observed 

error covariance, and nz  is the observations. 
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These equations involve 
*

nx  which has not been 

determined.  Variation of 5.1 on 
q

ne  assuming 
1

nQ  is non-

singular yields the evolution equation, 

,10

,)( 1

**

1



 

Nn

Qxx nnnn M
      (5.4) 

subject to the initial condition, 

,)( 1

*

000

*

0 xMPxx Taa        (5.5) 

where 
ax0  is the analysis produced by observations for 

0tt   (Ménard and Daley 1996).  The system (5.2-5.5) forms 

the discrete-time Euler-Lagrange equations of the 

variational problem.  This system of equations is 

coupled and cannot be solved with a simple direct 

integration.  

In order to decouple the Euler-Lagrange equations 

the sweep method has to be implemented which takes the 

form 

,)( 1

*

 n

a

n

Ta

n

a

nn xMPxx         (5.6) 

Applying the sweep method adds a damping term to the 

adjoint equation which, when not in place, causes the 

sensitivity to grow exponentially with time as noted 

above.  The sweep method yields a modified adjoint 

equation of the form 
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],[)(][ 1

1

1 a

nnnn

a

n

Ta

nnn xzRxMPRI  



     (5.7) 

subject to the final condition, 

],[1 a

nNNN xzR    

Unlike equations (5.1-5.2), the modified adjoint 

equations depend on 
a

nx  and 
a

nP  (Ménard and Daley 1996).  

The modified adjoint equations are useful in that the 

standard adjoint equations (5.2-5.3) cannot be used over 

very long time scales even when the model is perfect.  

Unfortunately, the analysis error covariance matrix 
a

nP  

is expensive to calculate.  Therefore, we approximate 

the matrix IPRI a

nn  1
 by a simple decay time scale, 

where 1 .  This calculation is essentially free and 

recognizes that the effect of model error will be to 

limit the extent to which information propagates in the 

system. 

Our first experiment using this modified adjoint 

system places a Gaussian cooling anomaly in the central 

Pacific centered at 180
0
W and the Equator.  The anomaly 

itself extends from 140
0
E to 140

0
W and 20

0
S to 20

0
N.  We 

then run our GCM forward in time for 1000 days with this 

cooling anomaly to generate a climate anomaly.  Then, 

the adjoint is integrated with this anomaly introduced 
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at each time step and run backward in time to determine 

the sensitivity to that particular climate pattern.  In 

principle, this sensitivity should resemble the imposed 

Gaussian cooling anomaly. 

The response to this cooling is an alternating wave 

train of 500 hPa geopotential highs and lows emanating 

from Southeast Asia, arcing into the north Pacific, then 

arcing back over the west coast of North America into   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. 500mb height response to a La Niña forcing 

with a maximum cooling of 4
0
K/day and contour interval of 

10m. 
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California, as shown in Figure 8.  Although the wave 

train itself is not surprising, the fact that it does 

not emanate from the cooling maximum is surprising, and 

is indicative of the complexity of this system. 

The adjoint model is run backwards in time to 

generate the sensitivity by summing contributions from 

the adjoint thermal sensitivity.  The sensitivity 

generated by the adjoint is not markedly different from 

the imposed forcing.  It is centered roughly on the date 

line, and although it has more structure in meridional 

direction, with maxima at 10
0
N and 10

0
S, still has an 

overall character quite similar to the imposed Gaussian 

cooling anomaly.  In addition, there are heating 

anomalies to the north and south of the cooling anomaly 

in the extratropics, as shown in Figure 9.  While this 

obviously differs from the imposed anomaly, it is 

consistent with an enhanced Hadley cell in this region. 

Given the success of this initial experiment at 

reproducing a forcing anomaly for a given climate 

anomaly, a second experiment was attempted.  In this 

experiment, the model was integrated forward in time for 

1000 days to determine the errors associated with the 

model as measured by departures from the DJF climate 
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from the NCEP reanalysis.  The model was then run 

backwards using the adjoint technique described above to 

determine the forcing that would cancel this climate 

anomaly.  When this forcing is determined, the model can 

be adjusted to account for the error and run once again 

to examine if an improvement in the model climate is 

obtained.  Figure 10 shows that as the iterations 

increase, the empirical climate model error decreases 

and the model behaves more like the actual observed 

climate.  Not surprisingly, the thermal forcing 

increments associated with this iteration process seek                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 500mb cooling from adjoint due to La Niña 

forcing.  Contour is arbitrary. 
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to improve the climate by adjusting the 

tropical/extratropical heating contrasts, and as such, 

adjust the positions of the midlatitude jet streams.  

Figure 11 shows such an increment, showing the model 

heating contrasts over the subtropics in the vicinity of 

the storm tracks off the east coasts of Asia and North 

America.  These contrasts act to tighten the jet, 

lending to a more realistic flow and correcting the too 

zonal tendency of the base climate shown in Figure 7. 
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Figure 10. Reduction in the cost function measuring the 

difference the model’s climate and the observed January 

climate.  Also shown for comparison is the approximate 

error for the AMIP ensemble based upon Gates et al. 

(1999). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Thermal residual forcing increment on the  = 

0.3 surface.  Contour interval is arbitrary, with 

negative contours dashed. 
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6. Conclusions 

 The goal of our research was to create a climate 

model that could improve its ability to model the 

atmosphere by self-adjustment of a thermal forcing 

anomaly.  After determining that the central Pacific was 

the area which created the largest response in our 

climate model, a cooling similar to La Niña was used to 

test our ideas.  We began the research with the simplest 

climatic model to determine its weaknesses and allowed 

the model to self-adjust to correct for its own 

deficiencies.  In principle, this process could be 

continued until model skill on the order of a GCM was 

obtained.  

One benefit of this approach is that the role of 

transients, so important in modeling the atmosphere, can 

be included in this model self-correction implicitly.  

This is advantageous for a number of reasons, primarily 

because one does not need a “theory” of transients to 

correct model errors, as would be the case for a linear 

or nonlinear stationary wave model (Held et al. 1989).  

 It is interesting to ponder the question of whether 

the results we obtained would be useful in correcting 

current climate models.  Specifically, would our results 
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improve the current climate models to the point where 

they could forecast the atmosphere’s response to El Niño 

more accurately?  Since our models response greatly 

improved with the introduction of self-correcting 

forcing, we believe that the current climate models 

would also benefit from this type of adjustment. 

 With more time available, a Green’s function 

evaluation on our model would offer us more evidence on 

how well our model handles the atmosphere’s response to 

a SST anomaly.  Further, it would have been interesting 

to study the model forcing that generate the North 

Atlantic Oscillation (NAO) pattern, and understand how 

that pattern affects global weather. 
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